![]() Method of manufacturing cores for rotary electric machines
专利摘要:
A stator core which assures a favorable workability for coupling core segments and has favorable magnetic characteristics even when made by coupling core segments that are formed by laminating core division sheets. A method of manufacturing a core for rotary electric machines includes forming a coupling convexity having an arc-like planar shape and a coupling concavity engageable with the coupling convexity on core segments, forming a serial core segment assembly by engaging the coupling convexity on one of the core segments with the coupling concavity formed on an adjacent core segment so as to be rotatable by more than 180 degrees, and forming a magnetic circuit by bending the serial core segment assembly into an annular form. 公开号:US20010005933A1 申请号:US09/782,252 申请日:2001-02-14 公开日:2001-07-05 发明作者:Katsutoshi Kazama;Hisataka Kato;Kadai Takinami;Manabu Okamoto 申请人:Panasonic Corp; IPC主号:H02K1-148
专利说明:
[0001] Title of the Invention [0001] [0002] Core for rotory electric machines and method of manufacturing the same [0002] FIELD OF THE INVENTION [0003] The present invention relates to a manufacturing method of a core for rotary electric machines which is composed of laminated magnetic steel sheets. [0003] BACKGROUND OF THE INVENTION [0004] As conventional basic manufacturing methods of stator cores for rotary electric machines, there is a first method by which a cylindrical core is manufactured by punching out annular sheet cores by press work and laminating these sheet cores. [0004] [0005] This first manufacturing method by which the annular sheet cores are punched out by the press work allows waste rest portions to be produced inside and outside the sheet cores, thereby lowering a yield. [0005] [0006] As a second manufacturing method which can improve the yield, there is a method which is illustrated in FIGS. [0006] 20(a) through 20(d). [0007] According to the second method, a core division sheet [0007] 1 which has an engaging concavity 1 a and an engaging convexity 1 b as shown in FIG. 20(a) is first punched out by press work. A core segment 2 is composed by laminating such core division sheets 1 as shown in FIG. 20(b), the engaging convexity 1 b of the core segment 2 is positioned to one end of the engaging concavity 1 a of an adjacent core segment 2 as shown in FIG. 20(c) and the convexity 1 b is slid or inserted into the concavity 1 a for coupling the core segments 2, thereby forming a cylindrical stator core 3 as shown in FIG. 20(d). DISCLOSURE OF THE INVENTION [0008] The second manufacturing method by which the divided core sheets [0008] 1 are punced out by the press work does not allow the waste rest portions to be produced unlike the first manufacturing method and provides a favorable yield, but poses a problem that workability is low at the coupling stage shown in FIG. 20(c). Speaking concretely of a measure to obtain a favorable stator core 3 by lowering magnetic reluctance, it is necessary to reduce clearance between the coupled core segments including the concavity 1 a and the engaging convexity 1 b so as to eliminate a play among the coupled core segments 2, but a smaller play will require higher dimensional precision for coupling the core segments 2. [0009] Further, a stronger inserting force is required at a stage to engage a starting end of the engaging concavity with one end of the engaging convexity and slide the core segment [0009] 2 since the engaging convexity is inserted while causing friction not only between the engaging concavity 1 a and the engaging convexity 1 b but also over the entire joined surfaces including those of the engaging concavity and the engaging convexity. [0010] A primary object of the present invention is to provide a stator core which allows core segments to be coupled with high workability and has a favorable magnetic characteristic even when the stator core is manufactured by punching out core division sheets by press working and coupling core segments formed by laminating the divided core sheets so as to obtain a favorable blanking yield. [0010] [0011] A manufacturing method of a core for rotary electric machines according to the present invention is configured to compose serial core segment assembly by coupling a plurality of core segments which are composed of laminated core division sheets, and then form a cylindrical core by bringing both ends of the serial core segment assembly into contact with each other so as to bend it into an annular form. [0011] [0012] According to the present invention, it is possible to obtain a stator core which assures a high blanking yield, high workability for core segment coupling and a favorable magnetic characteristic. [0012] [0013] A manufacturing method of a core for rotary electric machines as claimed in claim [0013] 1 of the present invention is characterized in that it is configured to compose a plurality of core segments by laminating core division sheets on which tees are formed, compose a serial core segment assembly by coupling adjacent core segments with one another, bend the serial core segment assembly into an annular form so that yokes of all the adjacent core segments are brought into contact with one another and bringing yokes of core segments located at both ends of the serial core segment assembly into contact with each other, thereby forming a magnetic circuit. [0014] A manufacturing method of a core for rotary electric machines as claimed in claim [0014] 2 of the present invention is a method according to claim 1, characterized in that it is configured to couple adjacent core segments with each other at a location which will form an outer circumference when the magnetic circuit is formed by bending the serial core segment assembly into the annular form at the stage to compose the serial core segment assembly by coupling the adjacent core segments with one another. [0015] A manufacturing method for a core for rotary electric machine as claimed in claim [0015] 3 of the present invention is a method according to claim 1, characterized in that it is configured to fix both the ends of the serial core segment assembly by welding or cementing them to each other after the magnetic circuit is formed by bending the serial core segment assembly into the annular form and bringing the yokes at both the ends of the serial core segment assembly into contact with each other. [0016] A manufacturing method of a core for rotary electric machines as claimed in claim [0016] 4 of the present invention is a method according to claim 1, characterized in that it is configured to couple both the ends of the serial core segment assembly with each other using a coupling device after the magnetic circuit is formed by bending the serial core segment assembly into the annular form and bringing the yokes of the core segments located at both the ends of the serial core segment assembly into contact with each other. [0017] A manufacturing method of a core for rotary electric machines as claimed in claim [0017] 5 of the present invention is characterized it is configured to compose a plurality of core segments by laminating core division sheets on which tees are formed, mold resin on surfaces of the core segments except end surfaces of yokes thereof, compose a serial core segment assembly by coupling adjacent core segments with one another, bend the serial core segment assembly into an annular form so that yokes of all adjacent core segments are brought into contact with one another, bring yokes of core segments located at both the ends of the serial core segment assembly into contact with each other for forming a magnetic circuit and couple both the ends of the serial core segment assembly by welding the molded material at both the ends of the serial core segment assembly. [0018] A manufacturing method of a core for rotary electric machine as claimed in claim [0018] 6 of the present invention is characterized in that it is configured to compose a plurality of core segments by laminating core division sheets on which tees are formed, compose a serial core segment assembly by coupling adjacent core segments with one another, molds resin on the surfaces of the serial core segment assembly except end surfaces of yokes of the core segments, bend the serial core segment assembly into an annular form so that yokes of all the adjacent core segments are brought into contact with one another, form a magnetic circuit by bringing yokes of core segments located at both the ends of the serial core segment assembly into contact with each other and couple both the ends of the serial core segment assembly with each other by welding the molded material at both the ends of the serial core segment assembly. [0019] A manufacturing method of a core for rotary electric machines as claimed in claim [0019] 7 of the present invention is characterized in that it is configured to compose a plurality of core segments by laminating core division sheets on which tees are formed, compose a serial core segment assembly by coupling adjacent core segments with one another, bend the serial core segment assembly into an annular form so that yokes of all adjacent core segments are brought into contact with one another, form a magnetic circuit by bringing yokes of the core segments disposed at both ends of the serial core segment assembly into contact with each other and couple both the ends of the serial core segment assembly with each other by molding resin on the serial core segment assembly bent in the annular form. [0020] A manufacturing method of a core for rotary electric machines as claimed in claim [0020] 8 of the present invention is a method according to claim 1, characterized in that it is configured to couple both the ends of the serial core segment assembly with each other by engaging a first engaging portion formed at one end of the serial core segment assembly with a second engaging portion formed at the other end of the serial core segment assembly after the magnetic circuit is formed by bending the serial core segment assembly into the annular form and bringing the yokes of the core segments located at both the ends of the serial core segment assembly into contact with each other. [0021] A manufacturing method of a core for rotary electric machines as claimed in claim [0021] 9 of the present invention is a method according to claim 8, characterized in that it is configured to couple both the ends of the serial core segment assembly by overlapping and engaging first and second engaging portions in a radial direction of the serial core segment assembly bent in the annular form. [0022] A manufacturing method of a core for rotary electric machines as claimed in claim [0022] 10 of the present invention is a method according to claim 8, characterized in that it is configured to couple both the ends of the serial core segment assembly by overlapping and engaging the first and second engaging portions laminated in the laminated direction of the core division sheets. [0023] A core for rotary electric machines as claimed in claim [0023] 11 of the present invention is a core for rotary electric machines whose magnetic circuit is formed by composing a plurality of core segments of laminated core division sheets having tees formed thereon, coupling the core segments with one another so as to form a serial core segment assembly, bending the serial core segment assembly into an annular form so that yokes of all adjacent core segments are brought into contact with one another and bringing yokes of core segments located at both ends of the serial core segment assembly into contact with each other, characterized in that coupling portions for coupling adjacent core segments with one another are disposed over the entire region in the laminated direction of the core segments. [0024] A core for rotary electric machines as claimed in claim [0024] 12 of the present invention is a core for rotary electric machines whose magnetic circuit is formed by composing a plurality of core segments of laminated core division sheets having tees formed thereon, coupling the core segments with one another so as to form a serial core segment assembly, bending the serial core segment assembly into an annular form so that yokes of all adjacent core segments are brought into contact with one another and bringing yokes of core segments located at both ends of the serial core segment assembly into contact with each other, characterized in that coupling portions for coupling the adjacent core segments to one another are formed in a partial region in the laminated direction of the core division sheets. [0025] A core for rotary electric machines as claimed in claim [0025] 13 of the present invention is a core according to claim 12, characterized in that a concavity is formed on an end surface of the yoke of the core segment over the entire region in the laminated direction of the core division sheets as coupling portions for coupling adjacent core segments with one another and a convexity is formed on the other end surface of the yoke of the core segment at a location corresponding to the concavity over a partial region in the laminated direction of the core division sheets. [0026] A manufacturing method of a core for rotary electric machines as claimed in claim [0026] 14 of the present invention is a method according to claim 1 or 2, characterized in that it is configured to engage a coupling convexity which is formed on one of adjacent core segments and has an arc-like tip in a planar shape with the other core segment rotatably over 180 degrees so that an arm connecting a root to a tip of the coupling convexity of the core segment will not be plastically deformed at the stages to compose the serial core segment assembly by engaging the coupling convexity formed on the core segment with the other core segment, and to form the magnetic circuit by bending the serial core segment assembly into the annular form and bringing the yokes of the core segment located at both the ends of the serial core segment assembly into contact with each other. [0027] A manufacturing method of a core for rotary electric machines as claimed in claim [0027] 15 of the present invention is a method according to claim 1 or 2, characterized in that it is configured to engage a coupling convexity which is formed on one of adjacent core segments and has an arc-like tip in a planar shape with the other core segment rotatably within a defined range over 180 degrees and allow an arm connecting a root to the tip of the coupling convexity of the core segment to be plastically deformed in the course of the bending of the serial core segment assembly into the annular form at the stages to compose the serial core segment assembly by engaging the coupling convexity on one of adjacent core segments with the other core segment, and to form the magnetic circuit by bending the serial core segment assembly into the annular form and bringing the yokes of the core segments located at both the ends of the serial core segment assembly into contact with each other. [0028] A manufacturing method of a core for rotary electric machine as claimed in claim [0028] 16 of the present invention is a method according to claim 1 or 2, characterized in that it is configured to allow an arm connecting a root to a tip of the coupling convexity to be plastically deformed while the coupling convexity formed on one of adjacent core segments is fitted into the other core segment and the serial core segment assembly is bent into the annular form at the stages to compose the serial core segment assembly by engaging the coupling convexity formed on one of adjacent core segments with the other core segment, and to form the magnetic circuit by bending the serial core segment assembly into the annular form and bringing the yokes of the core segments located at both the ends of the serial core segment assembly into contact with each other. [0029] A manufacturing method of a core for rotary electric machines as claimed in claim [0029] 17 of the present invention is a method according to claim 1 or 2, characterized in that it is configured to press or insert the coupling convexity toward depth of the coupling concavity while the arc-shaped tip of the coupling convexity formed on one of the adjacent core segments is engaged with the arc-shaped coupling concavity formed in the other core segment and the serial core segment assembly is bent into the annular form at the stages to compose the serial core segment assembly by engaging the coupling convexity formed on one of the adjacent core segments with the other core segment, and to form the magnetic circuit by bending the serial core segment assembly into the annular form and bringing the yokes of the core segments located at both the ends of the serial core segment assembly into contact with each other. [0030] A manufacturing method of a core for rotary electric machines as claimed in claim [0030] 18 of the present invention is a method according to claim 1 or 2, characterized in that it is configured to couple adjacent core segments with each other using a coupling pin and allow the coupling pin to be deformed for bending the serial core segment assembly into the annular form at the stages to compose the serial core segment assembly by engaging the coupling convexity formed on one of adjacent core segments with the other core segment, and to form the magnetic circuit by bending the serial core segment assembly into the annular form and bringing the yokes of the core segments located at both the ends of the serial core segment assembly into contact with each other. [0031] A manufacturing method of a core for rotary electric machines as claimed in claim [0031] 19 of the present invention is a method according to claim 4, characterized in that it is configured to use a coupling pin as the coupling device. [0032] A manufacturing method of a core for rotary electric machines as claimed in claim [0032] 20 of the present invention is a method according to claim 1, characterized in that it is configured to continuously wind a wire in series around a plurality of tees of the serial core segment assembly and form a magnetic circuit by bending the serial core segment assembly having the continuous windings into an annular form. [0033] A manufacturing method of a core for rotary electric machines as claimed in claim [0033] 21 of the present invention is a method according to claim 1, characterized in that it is configured to fix by welding portions which are to form outer circumferences of the coupling portions of the serial core segment assembly after the magnetic circuit is composed by bending the serial core segment assembly into the annular form and bringing the yokes of the core segments located at both the ends of the serial core segment assembly into contact with each other. [0034] A manufacturing method of a core for rotary electric machines as claimed in claim [0034] 22 of the present invention is characterized in that it is configured to compose a plurality of core segments by laminating core division sheets on which tees are formed, compose a serial core segment assembly by coupling adjacent core segments with one another, mount an insulator made of resin on each core segment of the serial core segment assembly, bend the serial core segment assembly into an annular form so that yokes of all adjacent core segments are brought into contact with one another, form a magnetic circuit by bringing yokes of core segments located at both ends of the serial core segment assembly into contact with each other, and couple both the ends of the serial core segment assembly by welding the insulators located at both the ends of the serial core segment assembly. [0035] A manufacturing method of a core for rotary electric machines as claimed in claim [0035] 23 of the present invention is a method according to claim 8, characterized in that it is configured to forcibly expand a concavity which is formed at one end of the serial core segment assembly and couple both ends of the serial core segment assembly by applying a pressure to outside the forcibly expanded concavity after a convexity formed on the other end of the serial core segment assembly is inserted into the forcibly expanded concavity in a radial direction of the serial core segment assembly bent in the annular form. BRIEF DESCRIPTION OF THE DRAWINGS [0036] FIGS. [0036] 1(a) through 1(d) are diagrams illustrating steps of a first embodiment of the manufacturing method according to the present invention; [0037] FIGS. [0037] 2(a) through 2(d) are diagrams descriptive of core segments to be located at ends of a serial core segment assembly in the first embodiment; [0038] FIG. 3 is a perspective view of a coupled portion of both ends of the serial core segment assembly in the first embodiment; [0038] [0039] FIGS. [0039] 4(a) and 4(b) are perspective views illustrating a method to couple both the ends of the serial core segment assembly and concrete shapes of contact surfaces in the first embodiment; [0040] FIGS. [0040] 5(a) through 5(c) are diagrams illustrating steps for coupling in a second embodiment of the present invention; [0041] FIGS. [0041] 6(a) and 6(b) are diagrams illustrating steps for coupling in a third embodiment of the present invention; [0042] FIGS. [0042] 7(a) and 7(b) are diagrams illustrating steps for coupling in a forth embodiment of the present invention; [0043] FIGS. [0043] 8(a) through 8(d) are diagrams illustrating steps for coupling in a fifth embodiment of the present invention; [0044] FIGS. [0044] 9(a) and 9(b) are diagrams illustrating steps for coupling in a sixth embodiment of the present invention; [0045] FIGS. [0045] 10(a) and 10(b) are diagrams illustrating main members in the sixth embodiment; [0046] FIGS. [0046] 11(a) and 11(b) are diagrams illustrating steps for coupling both ends of a serial core segment assembly in a seventh embodiment of the present invention; [0047] FIGS. [0047] 12(a) through 12(e) are diagrams illustrating steps for coupling both ends of a serial core segment assembly in an eighth embodiment of the present invention; [0048] FIGS. [0048] 13(a) and 13(b) are diagrams illustrating steps for coupling both ends of a serial core segment assembly in a ninth embodiment of the present invention; [0049] FIGS. [0049] 14(a) and 14(b) are diagrams illustrating steps for coupling both ends of a serial core segment assembly in an eleventh embodiment of the present invention; [0050] FIGS. [0050] 15(a) and 15(b) are diagrams illustrating steps for coupling both ends of a serial core segment assembly in a fourteenth embodiment of the present invention; [0051] FIG. 16 is a diagram illustrating an appearance of an insulator and assembling steps therefor in the fourteenth embodiment; [0051] [0052] FIGS. [0052] 17(a) and 17(b) are diagrams illustrating coupling steps for a serial core segment assembly in a fifteenth embodiment of the present invention; [0053] FIGS. [0053] 18(a) and 18(b) are perspective views illustrating coupling steps for a serial core segment assembly in a sixteenth embodiment of the present invention; [0054] FIG. 19 is a perspective view illustrating coupled portions of a serial core segment assembly in a seventeenth embodiment of the present invention; and [0054] [0055] FIGS. [0055] 20(a) through 20(d) are diagrams illustrating steps of a conventional method of manufacturing a core. DESCRIPTION OF THE EMBODIMENTS [0056] Now, the manufacturing method according to the present invention will be described concretely with reference to the embodiments illustrated in FIGS. [0056] 1(a) through 19. [0057] First Embodiment [0057] [0058] FIGS. [0058] 1(a) through 4(b) illustrate the first embodiment of the present invention. The first embodiment is a manufacturing method of a stator core which has 24 slots. [0059] First, a first core division sheet [0059] 4 a shown in FIG. 1(a), and second and third core division sheets 4 b and 4 c shown in FIGS. 2(a) and 2(c) are formed by punching a magnetic steel plate by press working. A reference numeral 5 represents a tee which is to be used as an electrode. Sides of the core division sheets 4 a through 4 c which are to later constitute yokes have an angle a set in accordance with a finished form of the 24 slots. [0060] By laminating the first core division sheet [0060] 4 a in a number required for obtaining thickness of a core in a finished form, 22 core segments 7 a are composed in the first embodiment. By laminating the division core sheets 4 a as described above, a concavity 8 a is formed in one end surface of the yoke 6 over the entire region in the laminated direction and a convexity 8 b is formed in the other end surface of the yoke 6 over the entire region in the laminated direction at a location corresponding to the concavity 8 a. [0061] Similarly, a core segment [0061] 7 b shown in FIG. 2(b) is composed by laminating the second core division sheet 4 b in a required number described above. The core segment 7 b has the convexity 8 b formed in one end surface of the yoke 6 over the entire region in the laminated direction but does not have the concavity 8 a in the other end surface unlike the core segment 7 a. [0062] Similarly, a core segment [0062] 7 c shown in FIG. 2(d) is composed by laminating the third core division sheet 4 c in the required number described above. The core segment 7 c has the concavity 8 a formed in one end surface the yoke 6 over an entire region in the laminated direction, but does not have the convexity 8 b in the other end surface of the yoke 6 unlike the core segment 7 a. [0063] Then, a serial core segment assembly [0063] 9 is composed by connecting 22 core segments 7 a in series as shown in FIG. 1(c), and coupling the core segment 7 b and the core segment 7 c with both ends of the core segments 7 a. [0064] Speaking concretely, two adjacent core segments are engaged by inserting or sliding the convexity [0064] 8 b of one core segment into the concavity 8 a of the other core segment as shown in FIG. 20(c). As coupling portions in the first embodiment, a round tip is formed at a tip of the convexity 8 b and a protrusion 10 is formed on a portion of the yoke located on the side of the tee so that the concavity 8 a engages with an outer circumference of the tip of the convexity 8 b at an angle exceeding 180 degrees. Further, a slant portion 11 having an angle corresponding to the protrusion 10 is formed on the yoke at the root of the convexity 8 b on the side of the tee. [0065] When the serial core segment assembly [0065] 9 composed as described above is bent so as to locate the tees 5 inside, the coupling portions rotate smoothly around the tips of the convexities 8 b and an annular magnetic circuit is formed as shown in FIG. 1(d) by bringing the yokes of the core segment 7 b and the core segment 7 c into contact with each other. [0066] FIG. 3 shows details of a location at which the core segment [0066] 7 b and the core segment 7 c are brought into contact. At this location, the core segment 7 b and the core segment 7 c are coupled to each other by welding end surfaces as shown in FIG. 4(a). A reference numeral 12 represents a welded location. [0067] For more precisely positioning the core segment [0067] 7 b to the core segment 7 c when the serial core segment assembly is bent into an annular form, it is desirable to preliminarily form a positioning protrusion 13 a on the yoke of either the second or third core division sheet 4 b or 4 c and a receiving concavity 13 b for engagement with the protrusion 13 a in the other core division segment as shown in FIG. 4(b). [0068] Though the end surfaces of the core segments [0068] 7 b and the core segment 7 c are welded for coupling the core segment 7 b and the core segment 7 c with each other in the first embodiment described above, the portions which are brought into contact with each other can be fixed by welding an outer circumferences 14 of these portions without welding the end surfaces. [0069] In the first embodiment which is configured as described above, the core segment [0069] 7 b and the core segment 7 c can be coupled with an inserting force which is weaker than that conventionally required since the core segment 7 b slides in the laminated direction while causing friction only between an inner circumferential surface of the concavity 8 a and an outer circumference of the tip of the convexity 8 b, and almost all portions of the yokes are free from friction at the stage to couple the core segments 7 a, 7 b and 7 c. [0070] Further, the serial core segment assembly [0070] 9 can be bent into a cylindrical form with a weak force since the coupling portions are rotate smoothly around the tips of the convexities 8 b at the stage to bend the serial core segment assembly into the annular form. Furthermore, favorable yokes having a low magnetic resistance can be located close to the roots of the tees 5 and a stator core having a favorable magnetic characteristic can be obtained since the core segments are coupled to one another with the coupling portions formed on the portions which are to form an outer circumference when the magnetic circuit is formed by bending the serial core segment assembly 9 into the annular form. [0071] While comparing the manufacturing method preferred as the first embodiment with the conventional manufacturing method, description will be made of the excellence in winding work of the manufacturing method according to the first embodiment. [0071] [0072] After a stator core has been finished in the cylindrical form, wires are continuously wound while passing them through slight gaps between tips of the tees [0072] 5. However, workability is low when the wires are wound while passing them through the gaps between the tips of the tees. [0073] The conventional manufacturing method described with reference to FIG. 20 permits winding wires without passing them through the slight gaps between tips of the tees when the wires are wound around the tees [0073] 5 of each core segment 2 in the condition shown in FIG. 20(b) where the core segments have not been coupled yet and terminal treatment is carried out for serial connection of the wires wound separately around the tees 5 after the core is finished in the cylindrical form shown in FIG. 20(d). [0074] The manufacturing method preferred as the first embodiment, which is configured to wind a wire continuously around the tees [0074] 5 in the condition of the serial core segment assembly and compose the magnetic circuit by bending the serial core segment assembly having the wound wire into the annular form, not only permits winding the wire without passing it through the gaps between the tips of the tees of the stator core finished in the annular form as shown in FIG. 1(d) but also requires no tedious terminal treatment unlike the conventional manufacturing method, thereby assuring favorable winding workability. [0075] Further, the manufacturing method preferred as the first embodiment allows slot openings to be reduced, thereby capable of enhancing an effective magnetic flux and lowering cogging torques of motors having permanent magnets. [0075] [0076] Though description has been made of the first embodiment taking the stator core which has the [0076] 24 tees as an example, the manufacturing method is applicable also to stator cores which have tees (slots) in different numbers. [0077] Second Embodiment [0077] [0078] FIGS. [0078] 5(a) through 5(c) show the second embodiment of the present invention. Though the convexities 8 b are not plastically deformed at the stage to form the cylindrical stator core by bending the serial core segment assembly 9 into the annular form in the first embodiment, convexities are partially deformed plastically in the second embodiment. FIGS. 5(a) through 5(c) exemplify a stator core which has 6 slots. [0079] FIG. 5([0079] a) illustrates a condition immediately after core segments are coupled in series. The core segments smoothly rotate around a tip of the convexity 8 b and the convexity 8 b is not plastically deformed at an initial stage to bend the serial core segment assembly 9 into the annular form but, once a tip of a protrusion 10 is brought into contact with an arm 15 which connects a tip of the convexity 8 b to a yoke 6, subsequent bending causes plastic deformation of the arm as shown in FIG. 5(c) to finish a stator core 3 in a cylindrical form. In the other respects, the second embodiment remains unchanged from the first embodiment. [0080] Third Embodiment [0080] [0081] FIGS. [0081] 6(a) and 6(b) illustrate the third embodiment of the present invention. Though the convexities 8 b are not plastically deformed at the stage to form the cylindrical stator core by bending the serial core segment assembly 9 into the annular form in the first embodiment, convexities are partially deformed plastically in the third embodiment. FIGS. 6(a) and 6(b) exemplify a stator core which has 6 slots. [0082] FIG. 6([0082] a) shows a condition immediately after core segments are coupled in series wherein a convexity 8 b having a triangular tip is engaged with a concavity 8 a formed in an adjacent core segment. [0083] When starting bending of a core segment assembly [0083] 9 into an annular form, an arm 15 which connects the tip of the convexity 8 b to a yoke 6 is plastically deformed as shown in FIG. 6(b) to finish a stator core in a cylindrical form. [0084] The third embodiment remains unchanged from the first embodiment in the other respects. [0084] [0085] The tip of the convexity [0085] 8 b may not be triangular and can have another shape which does not permit rotation thereof, concretely rectangular or elliptical shape. [0086] Fourth Embodiment [0086] [0087] FIGS. [0087] 7(a) and 7(b) show the fourth embodiment of the present invention. In contrast to the first embodiment described above while exemplifying core division sheets on which the convexities having round tips are formed, the fourth embodiment is configured to form, as a convexity 8 b, an integral arm 16 b which has an arc shape around an angle P of an outer circumference from a portion constituting a yoke of a core division sheet to a tip. As the concavity 8 a corresponding to this arm 16 b, an arc-shaped notch 16 a is formed around the angle P of the outer circumference. [0088] When starting to bend a serial core segment assembly [0088] 9 into an annular form, the arc-shaped arm 16 b is pressed or inserted into the arc-shaped notch 16 a and a cylindrical stator core is finished as shown in FIG. 7(b). The fourth embodiment remains unchanged from the first embodiment in the other respects. [0089] Fifth Embodiment [0089] [0090] FIGS. [0090] 8(a) through 8(d) illustrate the fifth embodiment of the present invention. In contrast to the fourth embodiment wherein the arc-shaped arm 16 b is formed integrally with the core division sheet as the convexity, the fifth embodiment is configured to form an arc-shaped arm 16 b separately from a core division sheet 4. [0091] As shown in FIG. 8([0091] a), formed in the core division sheet 4 are an arm setting notch 17 at one end of a portion which is to constitute a yoke and an notch 16 a having an arc shape around an angle P of an outer circumference. [0092] A plurality of core segment bodies [0092] 70 are composed by laminating the core division sheet 4 in a required number as shown in FIG. 8(b). A core segment 7 is composed by fitting the separately formed arc-shaped arm member 16 b into a groove 18 which is formed in the laminated direction by the arm setting notches formed in the core segment body 70 for setting the arm. [0093] A serial core segment assembly [0093] 9 is composed by coupling the core segments 7 as shown in FIG. 8(c) and bent into an annular form to finish a cylindrical stator core as in the fourth embodiment. [0094] Though the arc-shaped arm member [0094] 16 b is formed by punching out arc-shaped magnetic steel plates and laminating these plates, this member can be formed not by laminating but by cutting it out as an integral lump. The fifth embodiment remains unchanged from the fourth embodiment in the other respects. [0095] Sixth Embodiment [0095] [0096] FIGS. [0096] 9(a) through 10(b) illustrate the sixth embodiment of the present invention. Though the coupling portions which couple the core segments to compose the serial core segment assembly are composed so as to engage the convexity 8 b formed at one end of the yoke 6 of the core segment with the concavity 8 a formed at the other end of the yoke 6 of the adjacent core segment in the first through fifth embodiments, the sixth embodiment is configured to compose a serial core segment assembly 9 by coupling adjacent core segments 7 a with a pin 19 as shown in FIG. 9(a) and bend the serial core segment assembly 9 into an annular form, thereby bending the pin 19 so as to finish a stator core having a cylindrical form as shown in FIG. 9(b). [0097] Speaking more concretely, holes [0097] 20 are formed at both ends of a portion which is to constitute a yoke of a core division sheet 4 a as shown in FIG. 10(a) and a plurality of core segments 7 a are composed by laminating the core division sheet 4 a in a required number. [0098] A serial core segment assembly [0098] 9 is composed by disposing the core segments 7 a and inserting U-shaped pins into the holes 20 of adjacent core segments as shown in FIG. 10(b). When the serial core segment assembly 9 is bent into an annular form, the pins 19 are deformed to finish a cylindrical stator core 3 shown in FIG. 9(b). [0099] Seventh Embodiment [0099] [0100] FIGS. [0100] 11(a) and 11(b) show the seventh embodiment of the present invention. In contrast to the first embodiment through the sixth embodiment in each of which both the ends of the serial core segment assembly are coupled with each other by welding after the magnetic circuit is formed by bending the serial core segment assembly into the annular form and bringing the yokes of the core segments disposed at both the ends of the serial core segment assembly into contact with each other, the seventh embodiment is configured to couple both ends of a serial core segment assembly 9 by engaging a first engaging portion 21 a formed at one end of the serial core segment assembly 9 with a second engaging portion 21 b formed at the other end as shown in FIG. 11(b). [0101] Eighth Embodiment [0101] [0102] FIGS. [0102] 12(a) through 12(e) illustrate the eighth embodiment of the present invention. [0103] In contrast to the first embodiment through the sixth embodiment wherein both the ends of the serial core segment assembly are coupled with each other by welding after the magnetic circuit is formed by bending the serial core segment assembly into the annular form and bringing the yokes of the core segments disposed at both the ends of the serial core segment assembly into contact with each other, the eighth embodiment is configured to compose a serial core segment assembly [0103] 9 of core segments 7 a which have the same shape as shown in FIGS. 12(a) and 12(b), form a magnetic circuit by bending the serial core segment assembly 9 into an annular form, and forcibly expand a concavity 8 a formed at one end of the serial core segment assembly 9 with a jig 22 a in a direction indicated by an arrow F1 as shown in FIG. 12(c). After a convexity 8 b formed at the other end of the serial core segment assembly 9 is inserted in the radial direction into the serial core segment assembly 9 which is bent in the annular form and press a partial or entire width outside a forcibly expanded concavity 8 aa with a jig 22 b in the laminated direction of the core division sheets to shape a stator core 3 as shown in FIG. 12(e). [0104] Though the eighth embodiment is configured to forcibly expand the concavity [0104] 8 a formed at the one end of the serial core segment assembly 9 after the core segments 7 a are composed into the serial core segment assembly 9, it is possible to expand the concavity 8 a in each of the core segment 7 a and then compose the serial core segment assembly 9. [0105] Ninth Embodiment [0105] [0106] FIGS. [0106] 13(a) and 13(b) illustrate the ninth embodiment. [0107] In contrast to the first through sixth embodiment each of which both the ends of the serial core segment assembly are coupled by welding after the magnetic circuit is formed by bending the serial core segment assembly into the annular form and bringing the yokes of the core segments located at both the ends of the serial core segment assembly into contact with each other, the ninth embodiment is configured to form ends of core division sheets so as to form concavities [0107] 23 a and convexities 23 b which are alternately flush at both ends a serial core segment assembly 9 as shown in FIG. 13(a) and put one and of the serial core segment assembly into the other end for forming a cylindrical magnetic circuit as shown in FIG. 13(b). [0108] Tenth Embodiment [0108] [0109] Though both the ends of the serial core segment assembly are coupled with each other by welding after the magnetic circuit is formed by bending the serial core segment assembly is bent into the annular form and bringing the yokes of the core segments located at both the ends of the serial core segment assembly into contact with each other in each of the first embodiment through the sixth embodiment, it is possible to couple a serial core segment assembly into an annular form by inserting a U-shaped pin [0109] 19, which is similar to the pin 19 which is used for composing the serial core segment assembly 9 in the sixth embodiment, into a hole formed at one end of the serial core segment assembly and a hole formed at the other end. [0110] Eleventh Embodiment [0110] [0111] FIGS. [0111] 14(a) and 14(b) show the eleventh embodiment of the present invention. Though both the ends of the serial core segment assembly are coupled with each other by welding, engaging or inserting the U-shaped pin after the magnetic circuit is formed by bending the serial core segment assembly into the annular form and bringing the yokes of the core segments located at both the ends of the serial core segment assembly in each of the first embodiment through the tenth embodiment, the eleventh embodiment is configured to mold resin on surfaces of core segments of a serial core segment assembly 9, except end surfaces of yokes, as shown in FIG. 14(a), and form a magnetic circuit by bending a serial core segment assembly 9 into an annular form so that yokes of all adjacent core segments are brought into contact with one another as shown in FIG. 14(b) and bring yokes of core segments 25 a and 25 b located at both ends of the serial core segment assembly into contact with each other. [0112] Both the end of the serial core segment assembly [0112] 9 which has been shaped into the annular form are coupled with each other by welding the material molded on an outer circumference 26 or end surfaces 25 c and 25 d with supersonic waves or similar means. [0113] Twelfth Embodiment [0113] [0114] Though the resin is molded selectively at the required locations after the serial core segment assembly is formed and both the ends thereof are coupled with each other by welding the molded material on both the ends of the serial core segment assembly after it is formed into the annular form in the eleventh embodiment, it is possible to mold resin on surfaces of core segments, except end surfaces of yokes, before they are coupled into a serial core segment assembly [0114] 9, compose a serial core segment assembly 9 by coupling the core segments having the molded resin and couple both ends of the serial core segment assembly by welding the molded material at both the ends of the serial core segment assembly in the same manner as that in the eleventh embodiment. [0115] Thirteenth Embodiment [0115] [0116] Though the resin is molded selectively at the required locations after the serial core segment assembly is composed and both the ends of the serial core segment assembly are coupled with each other by welding after the serial core segment assembly is bent into the annular form in the eleventh embodiment, it is possible to couple both ends of a serial core segment assembly by molding resin on the serial core segment assembly which is bent into an annular form. [0116] [0117] Fourteenth Embodiment [0117] [0118] FIGS. [0118] 15(a) through 16 show the fourteenth embodiment of the present invention. [0119] Though both the ends of the serial core segment assembly are coupled with each other by welding the material molded on the core segments in each of the eleventh embodiment and the twelfth embodiment, the fourteenth embodiment is configured to prepare insulators [0119] 27, 27 made of resin as shown in FIG. 16, mount the insulator 27 on each of core segments of a serial core segment assembly 9 as shown in FIG. 15(a), bend the serial core segment assembly 9 into an annular form so that yokes of all adjacent core segments are brought into contact with one another as shown in FIG. 15(b) and form a magnetic circuit by bringing yokes at ends 28 a and 28 b of the insulators 27 located at both ends of the serial core segment assembly 9 into contact with each other. [0120] Further, the insulators [0120] 27 located at both the ends of the serial core segment assembly 9 which is shaped into the annular form can be coupled with each other by welding an outer circumference or end surfaces 28 c and 28 d of the insulators 27 with ultrasonic waves or the like. [0121] Though the insulators [0121] 27, 27 are mounted on each of the core segments 7 of the serial core segment assembly 9 in FIGS. 15(a) and 15(b), a magnetic circuit can similarly be formed by mounting the insulators 27, 27 on the core segments 7 as shown in FIG. 16, composing the serial core segment assembly 9 by coupling the core segments on which the insulators 27, 27 have been mounted, bending the serial core segment assembly 9 into an annular form so that yokes of all adjacent core segments are brought into contact with one another, and bringing the yokes of the core segments of the ends 28 a and 28 b of the insulators 27 located at both the ends of the serial core segment assembly into contact with each other. [0122] Fifteenth Embodiment [0122] [0123] FIGS. [0123] 17(a) and 17(b) show the fifteenth embodiment of the present invention. Though the adjacent core segments are coupled by engaging the coupling concavities with the coupling convexities for composing the serial core segment assembly and the magnetic circuit is formed by bending the serial core segment assembly so that the yokes of the adjacent core segments are brought into contact with one another in each of the embodiments described above, it can be expected to enhance mechanical strength and precision of the annular form of a stator core by preliminarily forming an engaging protrusion 30 a and an engaging concavity 30 b at locations of a core division sheet 4 a which are on a side of the tee of the yoke as shown in FIG. 17(a) so that the engaging protrusion 30 a engages with the engaging concavity 30 b as shown in FIG. 17(b) when the serial core segment assembly is bent into the annular form. [0124] Sixteenth Embodiment [0124] [0125] FIGS. [0125] 18(a) and 18(b) show the sixteenth embodiment of the present invention. Though the coupling portions for coupling the core segments are formed as the concavity formed at one end of the yoke of the core segment over the entire width in the laminated direction and the convexity formed at the other end of the yoke of the core segment over the entire width in the laminated direction in each of the embodiments described above, a similar effect can be obtained by forming the similar coupling portions on end surfaces of partially in the laminated direction of the core division sheets. [0126] Speaking concretely, such an effect can be obtained by preparing and laminating core division sheets so as to form a concavity [0126] 8 a at one end of a yoke of a core segment 7 a over the entire width as shown in FIG. 18(a), and convexities 8 ba and 8 bb at the other end of the yoke of the core segment 7 a in the laminated direction except a middle portion thereof as shown in FIG. 18(a) or preparing and laminating core division sheets so as to form a concavity 8 a at one end of a yoke of a core segment 7 a over the entire width in the laminated direction and a convexity 8 bc at the other end of the yoke of the core segment 7 a at a middle location in the laminated direction as shown in FIG. 18(b). [0127] By forming such coupling portions for coupling adjacent core segments with each other partially on end surfaces of core segments, it is possible to further reduce friction to be produced by inserting the convexity [0127] 8 b into the concavity 8 a. [0128] Seventeenth Embodiment [0128] [0129] FIG. 19 shows the seventeenth embodiment of the present invention. Though the core segments [0129] 7 a-7 a, 7 a-7 b and 7 a-7 c are coupled with one another by the engagement, press fitting, insertion or use of the U-shaped pins in each of the first embodiment through the sixth embodiment, the seventeenth embodiment is configured to weld outer circumferences 31 of coupling portions partially or over the entire width in a condition where a serial core segment assembly is bent in an annular form as shown in FIG. 19. [0130] It can be expected that the welding enhances mechanical strength of a stator core [0130] 3 and precision of the annular form thereof. [0131] Though one tee is formed on a core division sheet in the embodiments described above, the similar effects may be obtained by forming a plurality of tees on one core division sheet, composing core segments by laminating such core division sheets and composing a serial core segment assembly by coupling the core segments and bending the serial core segment assembly into an annular form to finish a cylindrical stator core. [0131] [0132] As clear from the embodiments described above, configurations defined by claims of the present invention provide particular effects which are mentioned below: [0132] [0133] The manufacturing method of a core for rotary electric machines as claimed in claim [0133] 1 of the present invention permits composing a cylindrical core of core division sheets, thereby providing a favorable blanking yield. Further, this method is configured to bend a serial core segment assembly after it is composed by coupling core segments and permits coupling the core segments in a condition where yokes of adjacent core segments are free from friction, thereby assuring a high workability at the stage to couple the core segments. Furthermore, the method facilitates to bring the yokes of the adjacent core segments into close contact so as to remain no gap, thereby permitting lowering magnetic reluctance and obtaining a favorable magnetic characteristic. [0134] Moreover, the method permits continuously winding a wire around tees of the serial core segment assembly and then bending the serial core segment assembly into an annular form, thereby providing an assembling workability higher than that obtained in a case where wires are wound independently around tees of a core finished in a cylindrical form and the wires are connected in series by terminal treatments of the wires. [0134] [0135] The manufacturing method of a core for rotary electric machines as claimed in claim [0135] 2 of the present invention permits locating favorable yokes having a low magnetic reluctance close to roots of tees, thereby making it possible to obtain a stator core having a favorable magnetic characteristic. [0136] The manufacturing method of a core for rotary electric machines as claimed in claim [0136] 3 of the present invention permits stably maintaining a cylindrical form obtained by bending a serial core segment assembly into an annular form, thereby facilitating to handle the core in a stage to build it into a frame of a rotary electric machine. [0137] The manufacturing method of a core for rotary electric machines as claimed in claim [0137] 4 of the present invention permits stably maintaining a cylindrical form obtained by bending a serial core segment assembly into an annular form, thereby facilitating to handle the core at a stage to build it into a frame of a rotary electric machine. [0138] The manufacturing method of a core for rotary electric machines as claimed in claim [0138] 5 of the present invention permits stably maintaining a cylindrical form obtained by bending a serial core segment assembly into an annular form, thereby facilitating to handle the core at a stage to build it into a frame of a rotary electric machine. Further, this method allows both ends of the serial core segment assembly bent in the annular form to be coupled with each other by utilizing a molding material. [0139] The manufacturing method of a core for rotary electric machines as claimed in claim [0139] 6 of the present invention permits stably maintaining a cylindrical form obtained by bending a serial core segment assembly into an annular form, thereby facilitating to handle the core at a stage to build it into a frame of a rotary electric machine. Further, this method allows both ends of the serial core segment assembly bent into an annular form to be coupled with each other by utilizing a molding material. [0140] The manufacturing method of a core for rotary electric machines as claimed in claim [0140] 7 of the present invention permits stably maintaining a cylindrical form obtained by bending a serial core segment assembly into an annular form, thereby facilitating to handle the core at a stage to assemble it into a frame of a rotary electric machine. Further, this method allows both ends of the serial core segment assembly bent into an annular form to be coupled with each other by utilizing a molding material. [0141] The manufacturing method of a core for rotary electric machines as claimed in claim [0141] 8 of the present invention permits stably maintaining a cylindrical form obtained by bending a serial core segment assembly into an annular form, thereby facilitating to handle the core at a stage to assemble it into a frame of a rotary electric machine. [0142] The manufacturing method of a core for rotary electric machines as claimed in [0142] 9 of the present invention permits coupling both ends of a serial core segment assembly with each other simply by slightly changing shapes of core segments located at both the ends of the serial core segment assembly, thereby facilitating to handle the core at a stage to assemble it into a frame of a rotary electric machine. [0143] The manufacturing method of a core for rotary electric machines as claimed in claim [0143] 10 of the present invention allows both ends of a serial core segment assembly with each other simply by slightly changing manufactured lengths of yokes of core division sheets of core segments located at both the ends of the serial core segment assembly, thereby facilitating to handle the core at a stage to build it into a frame of a rotary electric machine. [0144] The core for rotary electric machines as claimed in claim [0144] 11 of the present invention consists of a serial core segment assembly which is composed of core segments composed by laminating core division sheets having the same shape. [0145] The core for rotary electric machines as claimed in claim [0145] 12 of the present invention permits weakening an inserting force for coupling core segments though it requires forming and laminating core division sheets which have several kinds of shapes. [0146] The core for rotary electric machines as claimed in claim [0146] 13 of the present invention is composed of core segments which have no distinction between front and rear surfaces or can be coupled in any direction, thereby featuring a high workability. [0147] The manufacturing method of a core for rotary electric machines as claimed in claim [0147] 14 of the present invention allows core segments to be rotated smoothly around tips of coupling convexities at a stage to bend a serial core segment assembly into an annular form, thereby shaping it into a cylindrical form with a slight force. [0148] The manufacturing method of a core for rotary electric machines as claimed in claim [0148] 15 of the present invention allows a serial core segment assembly to be bent into an annular form or shaped into a cylindrical form with a slight force required for plastic deformation of arms and facilitates to maintain the serial core segment assembly in the annular form owing to the plastic deformation of the arms. [0149] The manufacturing method of a core for rotary electric machines as claimed in claim [0149] 16 of the present invention allows a serial core segment assembly to be bent into an annular form or shaped into a cylindrical form with a slight force required for plastic deformation of arms and facilitates to maintain the serial core segment assembly in the annular form owing to the plastic deformation of the arms. [0150] The manufacturing method of a core for rotary electric machines as claimed in claim [0150] 17 of the present invention allows a serial core segment assembly to be bent into an annular form or shaped into a cylindrical form with a slight force required for pressing or inserting coupling convexities toward depth of coupling concavities. [0151] The manufacturing method of a core for rotary electric machines as claimed in claim [0151] 18 of the present invention is configured to coupled adjacent core segments with each other using a coupling pin and requires only formation of holes in the core segments for inserting the pin, thereby facilitating to manufacture the core segments as compared with core segments which have coupling concavities and convexities formed on outer circumferences thereof. [0152] The manufacturing method of a core for rotary electric machines as claimed in claim [0152] 19 of the present invention requires only formation of holes for inserting coupling pins into core segments to be located at both ends of a serial core segment assembly, thereby facilitating to manufacture the core segments as compared with core segments which have coupling concavities and convexities formed on outer circumferences thereof. [0153] The manufacturing method of a core for rotary electric machines as claimed in claim [0153] 20 of the present invention is configured to continuously wind a wire before a serial core segment assembly is bent into an annular form, thereby facilitating a winding work. [0154] The manufacturing method of a core for rotary electric machines as claimed in claim [0154] 21 of the present invention makes it possible to expect to enhance mechanical strength of a stator core and precision of an annular form thereof when a serial core segment assembly is bent into the annular form or finished in a cylindrical form. [0155] The manufacturing method of a core for rotary electric machines as claimed in claim [0155] 22 of the present invention permits stably maintaining a cylindrical form which is obtained by bending a serial core segment assembly into an annular form and facilitate to handle a core at a stage to assemble it into a frame of a rotary electric machine. Further, this method permits both ends of a serial core segment assembly bent in an annular form to be coupled with each other by utilizing an insulator material. [0156] The manufacturing method of a core for rotary electric machines as claimed in claim [0156] 23 of the present invention permits composing a cylindrical stator core only of core segments which have the same shape.
权利要求:
Claims (23) [1" id="US-20010005933-A1-CLM-00001] 1. A manufacturing method of a core for rotary electric machines comprising: a step to compose a plurality of core segments by laminating core division sheets on which tees are formed; and a step to form a magnetic circuit by composing a serial core segment assembly by coupling adjacent core segments with one another, bending the serial core segment assembly into an annular form so that yokes of all the adjacent core segments are brought into contact with one another and bringing yokes of core segments located at both ends of the serial core segment assembly into contact with each other. [2" id="US-20010005933-A1-CLM-00002] 2. A manufacturing method of a core for rotary electric machines according to claim 1 wherein the adjacent core segments are coupled with each other, at the stage to compose the serial core segment assembly by coupling the adjacent core segments with one another, at a location which is to constitute an outer circumference when a magnetic circuit is formed by bending the serial core segment assembly into the annular form. [3" id="US-20010005933-A1-CLM-00003] 3. A manufacturing method of a core for rotary electric machines according to claim 1 wherein both the ends of the serial core segment assembly are fixed to each other by welding or cementing after the magnetic circuit is formed by bending the serial core segment assembly into the annular form and bringing yokes of core segments located at both the ends of the serial core segment assembly into contact with each other. [4" id="US-20010005933-A1-CLM-00004] 4. A manufacturing method of a core for rotary electric machines according to claim 1 wherein both the ends of the serial core segment assembly are coupled with each other with a coupling device after the magnetic circuit is formed by bending the serial core segment assembly into the annular form and bringing yokes of core segments located at both the ends of the serial core segment assembly into contact with each other. [5" id="US-20010005933-A1-CLM-00005] 5. A manufacturing method of a core for rotary electric machines comprising: a step to compose a plurality of core segments by laminating core division sheets on which tees are formed; a step to mold resin on surfaces of the core segments except end surfaces of yokes; a step to compose a serial core segment assembly by coupling adjacent core segments with one another; a step to form a magnetic circuit by bending the serial core segment assembly into an annular form so that yokes of all the adjacent core segments are brought into contact with one another and bringing yokes of core segments located at both ends of the serial core segment assembly into contact with one another; and a step to couple both the ends of the serial core segment assembly by welding the molded material at both the ends of the serial core segment assembly. [6" id="US-20010005933-A1-CLM-00006] 6. A manufacturing method of a core for rotary electric machines comprising: a step to compose a plurality of core segments by laminating core division sheets on which tees are formed; a step to compose a serial core segment assembly by coupling adjacent core segments with one another; a step to mold resin on surfaces except end surfaces of yokes of the core segments of the serial core segment assembly; a step to form a magnetic circuit by bending the serial core segment assembly into an annular form so that yokes of all the adjacent core segments are brought into contact with one another and bringing yokes of core segments located at both ends of the serial core segment assembly into contact with each other; and a step to couple both the ends of the serial core segment assembly with each other by welding the molded material at both the ends of the serial core segment assembly. [7" id="US-20010005933-A1-CLM-00007] 7. A manufacturing method of a core for rotary electric machines comprising: a step to compose a plurality of core segments by laminating core division sheets on which tees are formed; a step to compose a serial core segment assembly by coupling adjacent core segments with one another; a step to form a magnetic circuit by bending the serial core segment assembly into an annular form so that yokes of all the adjacent core segments are brought into contact with one another and bringing yokes of core segments located at both ends of the serial core segment assembly into contact with each other; and a step to couple both the ends of the serial core segment assembly by molding resin on the serial core segment assembly bent in the annular form. [8" id="US-20010005933-A1-CLM-00008] 8. A manufacturing method of a core for rotary electric machines according to claim 1 wherein both the ends of the serial core segment assembly are coupled with each other by engaging a first engaging portion formed at one end of the serial core segment assembly with a second engaging portion formed at the other end of the serial core segment assembly after the magnetic circuit is formed by bending the serial core segment assembly into the annular form and bringing both the ends of the serial core segment assembly into contact with each other. [9" id="US-20010005933-A1-CLM-00009] 9. A manufacturing method of a core for rotary electric machines according to claim 8 wherein the first and second engaging portions are engaged by overlapping them in a radial direction of the serial core segment assembly bent in the annular form. [10" id="US-20010005933-A1-CLM-00010] 10. A manufacturing method of a core for rotary electric machines according to claim 8 wherein the first and second engaging portions are engaged by overlapping the serial core segment assembly in a laminated direction of the core division sheets. [11" id="US-20010005933-A1-CLM-00011] 11. A core for rotary electric machines having a magnetic circuit which is formed by composing a plurality of core segments by laminating core division sheets on which tees are formed, composing a serial core segment assembly by coupling adjacent core segments with one another, bending the serial core segment assembly into an annular form so that yokes of all the adjacent core segments are brought into contact with one another and bringing yokes of core segments located at both ends of the serial core segment into contact with each other, wherein coupling portions for coupling the adjacent core segments with one another are formed on end surfaces of the yokes of the core segments over an entire region in a laminated direction of the core segments. [12" id="US-20010005933-A1-CLM-00012] 12. A core for rotary electric machines having a magnetic circuit which is formed by composing a plurality of core segments by laminating core division sheets on which tees are formed, composing a serial core segment assembly by coupling adjacent core segment with one another, bending the serial core segment assembly so that yokes of all the adjacent core segments are brought into contact with one another and bringing yokes of core segments located at both ends of the serial core segment assembly into contact with each other, wherein coupling portions for coupling the adjacent core segments are formed on end surfaces of the yokes within a partial region in a laminated direction of the core segments. [13" id="US-20010005933-A1-CLM-00013] 13. A core for rotary electric machines according to claim 12 wherein as coupling portions for coupling adjacent core segments with one another concavities are formed on end surfaces of the yokes of the core segments over an entire region in the laminated direction of the core division sheets and convexities are formed on the other end surfaces in the laminated direction of the core division sheets at locations corresponding to said concavities. [14" id="US-20010005933-A1-CLM-00014] 14. A manufacturing method of a core for rotary electric machines according to claim 1 or 2 configured to engage a coupling convexity which is formed on one of adjacent core segments and has an arc-like tip in a planar shape thereof with the other core segment rotatably over 180 degrees so that an arm connecting a root to a tip of a convexity for coupling core segments is not plastically deformed at the stages to compose a serial core segment assembly by engaging the coupling convexity formed on one of the adjacent core segment with the other core segment, and to form the magnetic circuit by bending the serial core segment assembly into the annular form and bringing the yokes of the core segments located at both the ends of the serial core segment assembly into contact with each other. [15" id="US-20010005933-A1-CLM-00015] 15. A manufacturing method of a core for rotary electric machines according to claim 1 or 2 configured to engage a coupling convexity which is formed on one of adjacent core segments and has an arc-like tip in a planar shape thereof with the other core segment rotatably within a defined range over 180 degrees and allow an arm connecting a root to a tip of the coupling convexity on the core segment to be plastically deformed in the course to bend the serial core segment assembly into the annular form at the stages to compose the serial core segment assembly by engaging the coupling convexity formed on one of the adjacent core segments with the other core segment, and to form the magnetic circuit by bending the serial core segment assembly into the annular form and bringing the yokes of the core segments located at both the ends of the serial core segment assembly into close contact with each other. [16" id="US-20010005933-A1-CLM-00016] 16. A manufacturing method of a core for rotary electric machines according to claim 1 or 2 configured to fit a coupling convexity formed on one of adjacent core segments into the other core segment and allow an arm connecting a root to a tip of the coupling convexity on the core segment to be plastically deformed in the course to bend the serial core segment assembly into the annular form at the stages to compose the serial core segment assembly by engaging the coupling convexity formed on one of the adjacent core segment with the other core segment, and to form the magnetic circuit by bending the serial core segment assembly into the annular form and bringing the yokes of the core segments located at both the ends of the serial core segment assembly into contact with each other. [17" id="US-20010005933-A1-CLM-00017] 17. A manufacturing method of a core for rotary electric machines according to claim 1 or 2 configured to engage an arc-shaped tip of a coupling convexity formed on one of adjacent core segments with an arc-shaped coupling concavity formed in the other core segment and press or insert the coupling convexity toward depth of the coupling concavity at the stages to compose the serial core segment assembly by engaging the coupling convexity formed on one of the adjacent core segments with the other core segment, and to form the magnetic circuit by bending the serial core segment assembly into the annular form and bringing the yokes of the core segments located at both the ends of the serial core segment assembly into contact each other. [18" id="US-20010005933-A1-CLM-00018] 18. A manufacturing method of a core for rotary electric machines according to claim 1 or 2 configured to couple adjacent core segments with each other using a coupling pin and bend the serial core segment assembly into the annular form by deforming the coupling pin at the stages to compose the serial core segment assembly by engaging the coupling convexity formed on one of the adjacent core segments with the other core segment, and to form the magnetic circuit by bending the serial core segment assembly into the annular form and bringing the yokes of the core segments located at both the ends of the serial core segment assembly into contact with each other. [19" id="US-20010005933-A1-CLM-00019] 19. A manufacturing method of a core for rotary electric machines according to claim 4 wherein the coupling device is a coupling pin. [20" id="US-20010005933-A1-CLM-00020] 20. A manufacturing method of a core for rotary electric machines according to claim 1 configured to form a magnetic circuit by continuously winding a wire in series over a plurality of tees of a serial core segment assembly and bending the serial core segment assembly having the continuous windings into an annular form. [21" id="US-20010005933-A1-CLM-00021] 21. A manufacturing method of a core for rotary electric machines according to claim 1 configured to fix by welding a portion which is to constitute an outer circumference of a coupled portion between both ends of a serial core segment assembly after the magnetic circuit is formed by bending the serial core segment assembly into the annular form and bringing the yokes of the core segments of the serial core segment assembly into contact with each other. [22" id="US-20010005933-A1-CLM-00022] 22. A manufacturing method of a core for rotary electric machines comprising: a step to compose a plurality of core segments by laminating core division sheets on which tees are formed; a step to compose a serial core segment assembly by coupling adjacent core segment with one another; a step to mount an insulator made of resin on each of the core segments of the serial core segment assembly; a step to form a magnetic circuit by bending the serial core segment assembly into an annular form so that yokes of all the adjacent core segment are brought into contact with one another and bringing yokes of core segments located at both ends of the serial core segment assembly into contact with each other; and a step to couple both the ends of the serial core segment assembly with each other by welding the insulators located at both the ends of the serial core segment assembly [23" id="US-20010005933-A1-CLM-00023] 23. A manufacturing method of a core for rotary electric machines according to claim 8 configured to couple both the ends of the serial core segment assembly by forcibly expanding a concavity formed at one end of the serial core segment assembly, inserting a convexity formed at the other end of the serial core segment assembly into said forcibly expanded concavity in a radial direction of the serial core segment assembly bent in the annular form and then applying a pressure to outside said forcibly expanded concavity.
类似技术:
公开号 | 公开日 | 专利标题 US6226856B1|2001-05-08|Method of manufacturing cores for rotary electric machines EP2466732B1|2016-07-27|Manufacturing method of a laminated rotor core JP5537964B2|2014-07-02|Rotating electric machine KR100433998B1|2004-06-04|Stator and stator core for a dynamoelectric machine and a method for manufacture thereof WO2006028179A1|2006-03-16|Method for manufacturing laminated core EP2120313A2|2009-11-18|Electrical motor and method for manufacturing the same JPH09308143A|1997-11-28|Material of core of rotary machine and manufacture of the core JP2000341889A|2000-12-08|Dynamo-electric machine core, manufacture thereof, core segments and dynamo-electric machine JP5212129B2|2013-06-19|Manufacturing method of laminated core and manufacturing jig thereof CN104170214A|2014-11-26|Armature of rotating electrical machine and method for manufacturing armature of rotating electrical machine JP2004320878A|2004-11-11|Manufacturing method of laminated core and laminated core US20080048529A1|2008-02-28|Manufacturing method for stator core and for stepping motor, and stepping motor JP3379461B2|2003-02-24|Core member laminating mold apparatus, core member laminating method and electric motor JP2006166498A|2006-06-22|Manufacturing method of laminated rotor iron core JP2001339881A|2001-12-07|Stator for dynamo-electric machine and manufacturing method thereof JP2003134751A|2003-05-09|Coil forming method and jig for use in coil forming JPH11178259A|1999-07-02|Motor stator and its manufacture JP3274578B2|2002-04-15|Laminated core for stator JP4062938B2|2008-03-19|Motor stator core assembly and method of assembling stator assembly JP5505661B2|2014-05-28|Manufacturing method of electric motor JP3474769B2|2003-12-08|Armature coil conductor and manufacturing method thereof JP3368491B2|2003-01-20|Manufacturing method of split stator JP4707049B2|2011-06-22|Manufacturing method of laminated stator core JP2000152528A|2000-05-30|Multipolar core, inner armature using it and its manufacture CN104604096A|2015-05-06|Stator core and outer rotor-type rotating electrical machine using same
同族专利:
公开号 | 公开日 EP0833427A1|1998-04-01| MY118088A|2004-08-30| TW350162B|1999-01-11| CN1156067C|2004-06-30| KR100465591B1|2005-06-16| ES2210437T3|2004-07-01| JPH10155248A|1998-06-09| JP3786664B2|2006-06-14| US6658721B2|2003-12-09| JP2004236497A|2004-08-19| US6226856B1|2001-05-08| DE69725672D1|2003-11-27| JP3568364B2|2004-09-22| US6504284B1|2003-01-07| DE69725672T2|2004-04-29| CN1178410A|1998-04-08| EP0833427B1|2003-10-22| KR19980024104A|1998-07-06|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 US20060061229A1|2004-09-21|2006-03-23|Nissan Motor Co., Ltd.|Stator for rotary electric machine| US7111380B2|2002-10-31|2006-09-26|Emerson Electric Co.|Method for forming an annular stator assembly| US20070096587A1|2005-10-31|2007-05-03|Ionel Dan M|Stator assembly for an electric machine and method of manufacturing the same| US20070247017A1|2004-05-29|2007-10-25|University Of Durham|Axial-Flux, Permanent Magnet Electrical Machine| US20090121577A1|2005-09-09|2009-05-14|Toyota Jidosha Kabushiki Kaisha|Stator core, motor, and method of manufacturing stator| US20090146519A1|2006-10-13|2009-06-11|Mitsui High-Tec, Inc.|Laminated rotor core and method for manufacturing the same| US20090189477A1|2006-06-05|2009-07-30|Mitsubishi Electric Corporation|Split Core and Manufacturing Method of the Same, and Stator Core| US7944111B2|2006-06-16|2011-05-17|Toyota Jidosha Kabushiki Kaisha|Stator and motor| CN103595195A|2013-12-02|2014-02-19|巢波|Method for manufacturing hinge type stator| CN104600924A|2015-01-29|2015-05-06|广东美的环境电器制造有限公司|Wire winding tooling of blocking motor stator and winding method| US9048704B2|2010-06-18|2015-06-02|Toyota Jidosha Kabushiki Kaisha|Stator manufacturing method| US10454354B2|2013-08-09|2019-10-22|Johnson Electric International AG|Single phase motor|US1756672A|1922-10-12|1930-04-29|Allis Louis Co|Dynamo-electric machine| US3802066A|1972-04-06|1974-04-09|Zenner W|Assembly method for stator or dynamo-electric machine| US4102040A|1975-07-03|1978-07-25|Societe Anonyme Pour L'equipement Electrique Des Vehicules S.E.V. Marchal|Method of manufacturing a curved component of a magnetic circuit| DE2805435A1|1978-02-09|1979-08-16|Blum Eisen & Metallind|ELECTRICAL MACHINE WITH AT LEAST ONE, MOVABLE BY ENERGY SUPPLY, E.G. ROTATING PART, SUCH AS ELECTRIC MOTOR, GENERATOR O.DGL.| US4365180A|1981-06-25|1982-12-21|General Motors Corporation|Strip wound dynamoelectric machine core| JPS6130939A|1984-07-20|1986-02-13|Fujitsu General Ltd|Manufacture of stator core| US4564779A|1984-09-14|1986-01-14|General Electric Company|Dynamoelectric machine stator using cylindrical keybars| US4835839A|1985-11-12|1989-06-06|General Electric Company|Method of fabricating a salient pole electronically commutated motor| DE3906368A1|1988-03-02|1989-09-14|Emiliane Trancerie Spa|Method for producing a stator magnetic circuit of rotating electrical machines or a magnetic circuit of transformers, and a magnetic circuit thus obtained| JPH01252141A|1988-03-31|1989-10-06|Shibaura Eng Works Co Ltd|Electric motor| JPH01264548A|1988-04-11|1989-10-20|Toshiba Corp|Manufacture of annular core| US5191698A|1988-09-14|1993-03-09|Matsushita Electric Industrial Co., Ltd.|Method of making a resin-molded motor| US5256926A|1989-08-01|1993-10-26|Robert Bosch Gmbh|Alternating-current generator with stator center lamination and method for producing the center lamination| JPH04344137A|1991-05-20|1992-11-30|Sanyo Electric Co Ltd|Stator for motor and manufacture of the stator| US5382859A|1992-09-01|1995-01-17|Unique Mobility|Stator and method of constructing same for high power density electric motors and generators| JP3355700B2|1993-06-14|2002-12-09|松下電器産業株式会社|Rotating electric machine stator| KR950004683A|1993-07-07|1995-02-18|이헌조|Iron core lamination method of motor stator| JP2888142B2|1993-11-08|1999-05-10|三菱電機株式会社|Rotary motor and method of manufacturing the same| DE19505020A1|1995-02-15|1996-08-22|Abb Management Ag|Method and device for producing conductor bars for dynamoelectric machines| GB2310545B|1996-02-22|2000-04-19|Honda Motor Co Ltd|Stator core and method and apparatus for assembling same| US6049153A|1996-02-23|2000-04-11|Matsushita Electric Industrial Co., Ltd.|Motor|US6335623B1|1992-12-18|2002-01-01|Fonar Corporation|MRI apparatus| US7127802B1|1997-11-21|2006-10-31|Fonar Corporation|Method of fabricating a composite plate| US5986377A|1997-04-11|1999-11-16|Kabushiki Kaisha Toshiba|Stator for dynamoelectric machine| US6084320A|1998-04-20|2000-07-04|Matsushita Refrigeration Company|Structure of linear compressor| JP3316762B1|1998-06-30|2002-08-19|三菱電機株式会社|Manufacturing method of iron core device| JP3279279B2|1998-06-30|2002-04-30|三菱電機株式会社|Iron core equipment| JP3439668B2|1998-10-02|2003-08-25|三菱電機株式会社|Iron core| JP3439673B2|1998-11-10|2003-08-25|三菱電機株式会社|Laminated core| US6225725B1|1999-02-08|2001-05-01|Itoh Electric Co. Ltd.|Manufacturing process of a divided type stator| JP2001069727A|1999-08-26|2001-03-16|Honda Motor Co Ltd|Manufacture of slotless stator and rotary electric machine| JP3496595B2|1999-10-27|2004-02-16|日産自動車株式会社|Rotating electric machine| EP1109287B1|1999-12-14|2005-10-12|Mitsubishi Denki Kabushiki Kaisha|Alternator| JP3476416B2|1999-12-24|2003-12-10|三菱電機株式会社|AC generator| FR2804552B1|2000-01-28|2003-01-03|Leroy Somer|METHOD FOR MANUFACTURING AN ELECTRIC MACHINE CIRCUIT| TW508891B|2000-02-21|2002-11-01|Misubishi Electric Corp|Stator iron core of electric motor, manufacturing method thereof, electric motor, and compresor| JP4014071B2|2000-03-13|2007-11-28|三菱電機株式会社|AC generator, winding assembly thereof, and method of manufacturing winding assembly| DE10013690B4|2000-03-21|2004-04-15|Schuler Pressen Gmbh & Co. Kg|Process for the production of packages consisting of sheet metal parts| JP2001320842A|2000-05-10|2001-11-16|Sankyo Seiki Mfg Co Ltd|Laminated core and method for manufacturing it| DE10037804A1|2000-06-09|2001-12-13|Kienle & Spiess Stanz & Druck|Sheet metal lamellae for sheet metal packages for rotors and / or stators for generators, motors, starter generators, generator starters and the like as well as methods for the production of such sheet metal lamellae| DE10030129A1|2000-06-20|2002-01-17|Deutsch Zentr Luft & Raumfahrt|Devices for drive units of lightweight robots| US6822449B1|2000-11-22|2004-11-23|Fonar Corporation|Ferromagnetic frame with laminated carbon steel| US6487769B2|2000-11-30|2002-12-03|Emerson Electric Co.|Method and apparatus for constructing a segmented stator| US6597078B2|2000-12-04|2003-07-22|Emerson Electric Co.|Electric power steering system including a permanent magnet motor| US6744166B2|2001-01-04|2004-06-01|Emerson Electric Co.|End cap assembly for a switched reluctance electric machine| US7012350B2|2001-01-04|2006-03-14|Emerson Electric Co.|Segmented stator switched reluctance machine| US6956312B2|2001-02-14|2005-10-18|Koyo Seiko Co., Ltd.|Brushless DC motor and method of manufacturing brushless DC motor| US6583530B2|2001-02-20|2003-06-24|Chun-Pu Hsu|Composite stator structure having corresponding concave embedding receiving grooves and arc-shaped teeth surfaces| US6651309B2|2001-02-27|2003-11-25|Delphi Technologies, Inc.|Method for fabricating a highly-dense powder iron pressed stator core for use in alternating current generators and electric motors| US7036207B2|2001-03-02|2006-05-02|Encap Motor Corporation|Stator assembly made from a plurality of toroidal core segments and motor using same| JP3749444B2|2001-03-15|2006-03-01|三菱電機株式会社|core| US6700284B2|2001-03-26|2004-03-02|Emerson Electric Co.|Fan assembly including a segmented stator switched reluctance fan motor| US6584813B2|2001-03-26|2003-07-01|Emerson Electric Co.|Washing machine including a segmented stator switched reluctance motor| US6897591B2|2001-03-26|2005-05-24|Emerson Electric Co.|Sensorless switched reluctance electric machine with segmented stator| JP2002320351A|2001-04-20|2002-10-31|Hitachi Ltd|Dc brushless motor stator core| JP2003052139A|2001-08-07|2003-02-21|Hitachi Ltd|Steel core, dynamo-electric machine using the core, and method of manufacturing the core| JP3786854B2|2001-08-30|2006-06-14|株式会社三井ハイテック|Manufacturing method of laminated iron core| US7701209B1|2001-10-05|2010-04-20|Fonar Corporation|Coils for horizontal field magnetic resonance imaging| US7906966B1|2001-10-05|2011-03-15|Fonar Corporation|Quadrature foot coil antenna for magnetic resonance imaging| JP2003164080A|2001-11-27|2003-06-06|Asmo Co Ltd|Armature for rotating-electric machine and manufacturing method therefor| JP2003169431A|2001-11-29|2003-06-13|Hitachi Ltd|Motor| FR2835977B1|2002-02-11|2004-07-02|Leroy Somer Moteurs|METHOD AND MACHINE FOR MANUFACTURING A MAGNETIC CIRCUIT OF AN ELECTRIC MACHINE| JP3716808B2|2002-04-01|2005-11-16|日産自動車株式会社|Rotating electric machine| JP3733120B2|2002-12-27|2006-01-11|穩正企業股▲ふん▼有限公司|Motor combined stator structure| DE10234610A1|2002-07-30|2004-02-19|Robert Bosch Gmbh|Strip-shaped lamella for a stator in an electric machine has a final contour on each strip end with difference in length on the lamella caused by bending being leveled by a final contour| DE10243986A1|2002-09-20|2004-04-01|Robert Bosch Gmbh|Stand and electrical machine| US7062841B2|2002-10-08|2006-06-20|L.H. Carbide Corporation|Method of manufacturing a formable laminated stack in a progressive die assembly having a choke| KR100452379B1|2002-10-10|2004-10-12|엘지전자 주식회사|A unit core and manufacturing structure of motor| DE10248771A1|2002-10-18|2004-04-29|Siemens Ag|Permanently excited synchronous machine| US6877214B2|2002-11-05|2005-04-12|L. H. Carbide Corporation|Method of manufacturing a stack of laminations| US6784588B2|2003-02-03|2004-08-31|Metglas, Inc.|Low core loss amorphous metal magnetic components for electric motors| JP4927134B2|2003-05-08|2012-05-09|アスモ株式会社|Rotating electric machine stator| US6946769B2|2003-05-08|2005-09-20|Asmo Co., Ltd.|Insulator and manufacturing method thereof, and stator for electric rotating machine| US7205696B2|2003-09-05|2007-04-17|Black & Decker Inc.|Field assemblies having pole pieces with ends that decrease in width, and methods of making same| US20060226729A1|2003-09-05|2006-10-12|Du Hung T|Field assemblies and methods of making same with field coils having multiple coils| TW200514334A|2003-09-05|2005-04-16|Black & Decker Inc|Field assemblies and methods of making same| US20050189844A1|2003-09-05|2005-09-01|Du Hung T.|Field assemblies having pole pieces with dovetail features for attaching to a back iron piece and methods of making same| US7211920B2|2003-09-05|2007-05-01|Black & Decker Inc.|Field assemblies having pole pieces with axial lengths less than an axial length of a back iron portion and methods of making same| US7233091B2|2003-09-05|2007-06-19|Black & Decker Inc.|Electric motor with field assemblies having core pieces with mating features| US6919665B2|2003-09-30|2005-07-19|Nidec Shibaura Corporation|Stator core, an electric motor in which it is utilized, and method of manufacturing a stator core| US8595915B2|2004-01-02|2013-12-03|Mitsubishi Denki Kabushiki Kaisha|Stator of electric rotating machine| EP1598918A1|2004-05-17|2005-11-23|Grundfos A/S|Lamination stack made by segments| US7737598B2|2004-08-09|2010-06-15|A. O. Smith Corporation|Electric motor having a stator| US7247967B2|2004-08-09|2007-07-24|A. O. Smith Corporation|Electric motor having a stator| DE102004043425A1|2004-09-06|2006-03-30|Sew-Eurodrive Gmbh & Co. Kg|Segmental stator structure for electric motor has dovetail joints between adjacent broad and narrow segments, which carry alternate broad and narrow salient poles| DE102004043424A1|2004-09-06|2006-03-09|Sew-Eurodrive Gmbh & Co. Kg|Electric motor, has stator which enfolds laminated core with wound gear segments and unwound intermediate gear segments, where both segments are provided one over another in circumferential direction| JP4889988B2|2004-09-17|2012-03-07|アスモ株式会社|Insulator, stator, and brushless motor| US20060066171A1|2004-09-28|2006-03-30|Toyo Denso Kabusiki Kaisha|Stator core for rotating electric machine| US7148601B2|2004-09-30|2006-12-12|Asia Vital Component Co., Ltd.|Built-up stator assembly| JP4546213B2|2004-10-21|2010-09-15|本田技研工業株式会社|Motor and electric power steering device equipped with motor| JP4887656B2|2004-10-29|2012-02-29|トヨタ自動車株式会社|Rotating electric machine and car equipped with it| EP1655824B1|2004-11-08|2008-04-09|Etel S.A.|Linear motor with a segmented stator| US8401615B1|2004-11-12|2013-03-19|Fonar Corporation|Planar coil flexion fixture for magnetic resonance imaging and use thereof| US7646281B2|2005-01-14|2010-01-12|Lincoln Global, Inc.|Snap-together choke and transformer assembly for an electric arc welder| JP4649225B2|2005-02-14|2011-03-09|株式会社東芝|Outer rotor and manufacturing method thereof| WO2006096708A2|2005-03-07|2006-09-14|Black & Decker Inc.|Power tools with motor having a multi-piece stator| JP4816879B2|2005-06-30|2011-11-16|株式会社富士通ゼネラル|Axial air gap type electric motor| JP2007110808A|2005-10-12|2007-04-26|Toyota Motor Corp|Motor core| DE102005051506A1|2005-10-26|2007-05-16|Sew Eurodrive Gmbh & Co|Electric motor and method for manufacturing an electric motor| JP2007129835A|2005-11-04|2007-05-24|Aisin Seiki Co Ltd|Motor| JP4687433B2|2005-12-09|2011-05-25|トヨタ自動車株式会社|Motor core| DE112007000201T5|2006-01-24|2008-11-13|Kabushiki Kaisha Yaskawa Denki, Kitakyushu|Slotted cores for a motor stator, motor stator, permanent magnet type synchronous motor, and punch punch punching method for slotted cores| US20070262839A1|2006-05-09|2007-11-15|Spang & Company|Electromagnetic assemblies, core segments that form the same, and their methods of manufacture| US20070261231A1|2006-05-09|2007-11-15|Spang & Company|Methods of manufacturing and assembling electromagnetic assemblies and core segments that form the same| JP2007329990A|2006-06-06|2007-12-20|Mitsuo Ebisawa|Stator core, stator and its manufacturing method| KR101275210B1|2006-06-16|2013-06-18|엘지전자 주식회사|Stator for Motor with Winding Type Stator Core and Laundry Machine with the Same| JP4709114B2|2006-10-03|2011-06-22|三菱電機株式会社|Stator for rotating electrical machine| US7791237B2|2006-12-19|2010-09-07|General Electric Company|Fault-tolerant synchronous permanent magnet machine| JP4735529B2|2006-12-21|2011-07-27|トヨタ自動車株式会社|Motor stator| CN101282048B|2007-04-04|2011-04-20|上海南洋电机有限公司|Chaining fanning strip for large-medium type motor and manufacturing method thereof| CN101282049B|2007-04-04|2011-04-20|上海南洋电机有限公司|Chaining fanning strip for large-medium type motor and manufacturing method thereof| US8136229B2|2007-04-25|2012-03-20|Mitsui High-Tec, Inc.|Method of producing variant-shaped laminated core| US9386939B1|2007-05-10|2016-07-12|Fonar Corporation|Magnetic resonance imaging of the spine to detect scoliosis| CN201118414Y|2007-10-29|2008-09-17|深圳航天科技创新研究院|Square wave three-phase brushless permanent magnetic DC electromotor| CN101422854B|2007-10-31|2012-06-27|上海海马汽车研发有限公司|Vehicle body module pre-assembly structure and method| JP4637159B2|2007-11-12|2011-02-23|本田技研工業株式会社|Stator core| JP5260951B2|2007-12-13|2013-08-14|三菱電機株式会社|Laminated fixed iron core| KR100964540B1|2008-03-31|2010-06-21|이일환|Divided-core type moter stator| US8599215B1|2008-05-07|2013-12-03|Fonar Corporation|Method, apparatus and system for joining image volume data| JP5151738B2|2008-07-01|2013-02-27|株式会社デンソー|Rotating electric machine stator and rotating electric machine| JPWO2010010599A1|2008-07-24|2012-01-05|三菱電機株式会社|Iron core manufacturing method and iron core manufacturing apparatus| JP5237720B2|2008-08-08|2013-07-17|三菱電機株式会社|Laminated fixed iron core| JP2010115000A|2008-11-06|2010-05-20|Nippon Densan Corp|Motor and its manufacturing method| DE102008054529A1|2008-12-11|2010-06-17|Robert Bosch Gmbh|Electric motor, in particular actuating or drive motor in motor vehicles| DE102008063783A1|2008-12-18|2010-06-24|Wind-Direct Gmbh|Generator for a wind turbine and method for its production| JP2010220288A|2009-03-13|2010-09-30|Mabuchi Motor Co Ltd|Core block and magnetic pole core for motors using the core block| JP5213780B2|2009-03-27|2013-06-19|キヤノン株式会社|Inner rotor type motor| JP2010259174A|2009-04-23|2010-11-11|Harmonic Drive Syst Ind Co Ltd|Method of manufacturing motor stators| EP2425519A1|2009-04-29|2012-03-07|Ernesto Malvestiti S.p.A.|Process and mold for producing ferromagnetic cores of electric motors| JP5620126B2|2009-05-15|2014-11-05|株式会社三井ハイテック|Laminated iron core| CN101931289B|2009-06-19|2014-03-26|建准电机工业股份有限公司|Motor stator and manufacturing method thereof| JP4637959B2|2009-06-24|2011-02-23|パナソニック株式会社|Electric motor stator and electric motor and electric bicycle| JP2011045179A|2009-08-20|2011-03-03|Honda Motor Co Ltd|Stator and method for manufacturing the same| DE112009005388B4|2009-11-19|2020-12-03|Mitsubishi Electric Corp.|Method of manufacturing a molded stator of a rotary electric machine| KR101074939B1|2009-11-23|2011-10-18|뉴모텍|Magmate Winding Frame and Stator Core with the Same| DE102009055400A1|2009-12-30|2011-07-07|Robert Bosch GmbH, 70469|Stator in an electric machine| DE102010028509A1|2009-12-30|2011-07-07|Robert Bosch GmbH, 70469|Stator in an electric motor| JP2011147225A|2010-01-13|2011-07-28|Yaskawa Electric Corp|Rotary electric machine| JP2011147224A|2010-01-13|2011-07-28|Yaskawa Electric Corp|Rotary electric machine| EP2360813A1|2010-02-12|2011-08-24|Hansjörg Cueni|Dynamoelectric machine| JP5450189B2|2010-03-16|2014-03-26|アスモ株式会社|Method for manufacturing armature core| JP5528164B2|2010-03-18|2014-06-25|三菱電機株式会社|Stator for rotating electrical machine and method for manufacturing the same| JP2011200026A|2010-03-19|2011-10-06|Yaskawa Electric Corp|Rotary electric machine and manufacturing method for rotary electric machine| US9136735B2|2010-04-08|2015-09-15|Mitsubishi Electric Corporation|Rotary electric machine laminated core| DE102011011809A1|2010-05-18|2011-11-24|Aumann Gmbh|Polkette| US8400041B2|2010-05-28|2013-03-19|Nidec Motor Corporation|Segmented stator assemblies having end caps| US8786158B2|2010-08-19|2014-07-22|L. H. Carbide Corporation|Continuously formed annular laminated article and method for its manufacture| CN101951038A|2010-09-13|2011-01-19|浙江西子富沃德电机有限公司|Motor stator core and manufacturing method thereof| DE102010043976A1|2010-11-16|2012-05-16|Robert Bosch Gmbh|Component for manufacturing machine component e.g. stator for electric machine, has several teeth which are arranged at base portion in arrangement direction, and base portion comprises one or more upsetting regions between each teeth| US8704422B2|2010-11-18|2014-04-22|Nidec Motor Corporation|Full round stator assembly and electromagnetic machine having high slot fill| CN102157993A|2011-03-08|2011-08-17|大连名阳实业有限公司|Modularized flux switching permanent magnetmotor| US20120275942A1|2011-04-29|2012-11-01|Knapp John M|Systems and Methods for Electric Motor Construction| CN103563225B|2011-05-26|2017-02-22|三菱电机株式会社|Permanent magnet motor| WO2013003241A2|2011-06-30|2013-01-03|Mcintosh Devon R|Low-cost low-cog pm machine| TWI443938B|2011-08-26|2014-07-01|Univ Nat Taiwan Science Tech|Stator unit, winding method therefor, stator structure using the same; and manufacture therefor| US9099897B2|2011-09-13|2015-08-04|L.H. Carbide Corporation|Method for connecting end sections of an annular laminated article and articles made therefrom| CN103023165B|2011-09-21|2017-10-31|德昌电机有限公司|Stator core construction for motor and stator forming method| KR20130033668A|2011-09-27|2013-04-04|엘지이노텍 주식회사|Stator core for motor| CN103703655A|2011-10-06|2014-04-02|三菱电机株式会社|Laminated core manufacturing method and laminated core manufactured using same| JP5642291B2|2011-10-13|2014-12-17|三菱電機株式会社|Rotating electric machine| KR101243589B1|2012-01-02|2013-03-20|뉴모텍|Stator core of motor for washing machine| WO2013136646A1|2012-03-13|2013-09-19|パナソニック株式会社|Motor and method for manufacturing stator therefor| JP2014107993A|2012-11-29|2014-06-09|Hitachi Automotive Systems Ltd|Motor-driven actuator| US11141080B1|2013-03-13|2021-10-12|Fonar Corporation|Cervical vertebra angle measurement| DE102013204759A1|2013-03-19|2014-09-25|Robert Bosch Gmbh|Tooth segment for assembling a stator or rotor of an electric machine and method for the production of such| BR112015029558A2|2013-05-28|2017-07-25|Mitsubishi Electric Corp|iron core of a rotary electric machine| US10734850B2|2013-08-09|2020-08-04|Johnson Electric International AG|Single-phase motor| US20160190874A1|2013-08-23|2016-06-30|Amotech Co., Ltd.|Single stator and motor comprising same| DK2854256T3|2013-09-26|2017-09-11|Siemens Ag|Polar unit and stator assembly for a wind turbine generator and methods for manufacturing them| CN103611818B|2013-12-02|2015-11-18|巢波|The punching of cutting being suitable for hinge type stator laminates mould| DE102014211254B4|2014-06-12|2016-01-14|Schaeffler Technologies AG & Co. KG|Stator of an electric machine and method of manufacturing a stator| CN107005103B|2014-12-02|2018-09-21|三菱电机株式会社|The manufacturing method of stator for electric rotating machine iron core, electric rotating machine and electric rotating machine| DE102014019572A1|2014-12-23|2015-06-25|Daimler Ag|Ring element for an electrical machine and method for producing such a ring element| CN104600883A|2015-01-23|2015-05-06|广东威灵电机制造有限公司|Series excitation motor, stator core thereof, stator and manufacturing method of stator| DE102015000769A1|2015-01-26|2016-07-28|Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg|Stator for an electric motor and method for its production| DE102015201960A1|2015-02-04|2016-08-04|Volkswagen Aktiengesellschaft|Stator for an electric machine and method for its production| DE102015211921A1|2015-06-26|2016-12-29|Siemens Aktiengesellschaft|Stator for an electric machine and manufacturing process| CN106487118A|2015-08-28|2017-03-08|德昌电机有限公司|Electric machine| CN106487186A|2015-08-28|2017-03-08|德昌电机有限公司|Electric machine| CN106549512B|2015-09-16|2019-06-14|雅马哈发动机株式会社|Rotating electric machine| JP6578180B2|2015-09-30|2019-09-18|日本電産サンキョー株式会社|Stator, motor and pump device| JP6301899B2|2015-12-02|2018-03-28|ミネベアミツミ株式会社|Motor stator and inner rotor type motor provided with the stator| JP6602467B2|2016-04-08|2019-11-06|三菱電機株式会社|Laminated iron core and manufacturing method thereof| CN106100169A|2016-08-17|2016-11-09|珠海凯邦电机制造有限公司|Stator core, stator, motor and air-conditioner| CN111264016A|2017-11-01|2020-06-09|三菱电机株式会社|Core block connecting body and method for manufacturing armature core of rotating electrical machine| WO2019087358A1|2017-11-02|2019-05-09|三菱電機株式会社|Armature core of rotary electric machine and manufacturing method for armature core of rotary electric machine| KR20190120836A|2018-03-29|2019-10-25|효성전기주식회사|Easily combinable motor stator| WO2019220635A1|2018-05-18|2019-11-21|三菱電機株式会社|Stator, dynamo-electric machine, and method for manufacturing stator| KR101913088B1|2018-07-20|2018-10-30|효성전기주식회사|annular retaining type motor stator capable of concentrically fastening| TWI671976B|2018-08-08|2019-09-11|群光電能科技股份有限公司|Motor stator structure and stator assembly| CN109038870B|2018-08-22|2019-12-06|珠海格力电器股份有限公司|Iron core splicing block for motor, stator iron core and manufacturing method thereof, stator, motor and household appliance| CN108900015B|2018-08-30|2020-03-17|珠海格力电器股份有限公司|Iron core splicing block for motor, stator iron core and manufacturing method thereof, stator, motor and household appliance| CN110138155A|2019-05-08|2019-08-16|佛山市澳亚机电有限公司|A kind of motor stator rotor production technology| DE102019125862A1|2019-09-25|2021-03-25|Vacuumschmelze Gmbh & Co. Kg|Multi-part stator, electrical machine and method for manufacturing a multi-part stator and an electrical machine| WO2021111790A1|2019-12-03|2021-06-10|日本発條株式会社|Armature split body, armature, rotary electric machine, and armature split body manufacturing method|
法律状态:
2007-05-18| FPAY| Fee payment|Year of fee payment: 4 | 2011-05-11| FPAY| Fee payment|Year of fee payment: 8 | 2015-07-17| REMI| Maintenance fee reminder mailed| 2015-12-09| LAPS| Lapse for failure to pay maintenance fees| 2016-01-04| STCH| Information on status: patent discontinuation|Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 | 2016-01-26| FP| Expired due to failure to pay maintenance fee|Effective date: 20151209 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 JP8-257928||1996-09-30|| JP25792896||1996-09-30|| US08/929,135|US6226856B1|1996-09-30|1997-09-05|Method of manufacturing cores for rotary electric machines| US09/782,252|US6658721B2|1996-09-30|2001-02-14|Method of manufacturing cores for rotary electric machines|US09/782,252| US6658721B2|1996-09-30|2001-02-14|Method of manufacturing cores for rotary electric machines| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|